EE 435

Lecture 4

Fully Differential Single-Stage Amplifier Design

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
\Longrightarrow Common-mode and differential-mode analysis
\Longrightarrow Common Mode Gain
\Rightarrow Overall Transfer Characteristics
Design of 5T Op Amp
- Fundamental Amplifier Design Issues

Single-Stage Low Gain Op Amps

- Single-Stage High Gain Op Amps
- Two-Stage Op Amp
- Other Basic Gain Enhancement Approaches

Where we are at:

Single-Stage Low-Gain Op Amps

- Single-ended input

- Differential Input

(Symbol does not distinguish between different amplifier types)

Review from last lecture:

Differential Input Low Gain Op Amps

Will Next Show That :

- Differential input op amps can be readily obtained from single-ended op amps
- Performance characteristics of differential op amps can be directly determined from those of the single-ended counterparts

Review from last lecture:
 Counterpart Networks

Definition: The counterpart network of a network is obtained by replacing all n channel devices with p - channel devices, replacing all p-channel devices with n channel devices, replacing V_{SS} biases with V_{DD} biases, and replacing all V_{DD} biases with V_{SS} biases.

Review from last lecture:

Counterpart Networks

Theorem: The parametric expressions for all small-signal characteristics, such as voltage gain, output impedance, and transconductance of a network and its counterpart network are the same.

Synthesis of fully-differential op amps from symmetric networks and counterpart networks
Theorem: If F is any network with a single input and P is its counterpart network, then the following circuits are fully differential circuits --- "op amps".

Synthesis of fully-differential op amps from symmetric networks and counterpart networks

Terminology

Applications of Quarter-Circuit Concept to Op Amp Design
consider initially the basic single-ended amplifier

Determination from op amp chàracteristics from quarter circuit characteristics

-- The "differential" gain --

Small signal Quarter Circuit

$\mathbf{A}_{\text {voac }}=-\frac{\mathbf{G}_{\mathrm{M}}}{\mathbf{G}}$

$$
B W=\frac{G}{C_{L}} \quad G B=\frac{G_{M}}{C_{L}}
$$

Small signal differential amplifier

Note: Factor of 4 reduction of gain if $G_{1}=G_{2}$ (this often occurs)

$$
A_{v 0}=\frac{v_{b u T}^{-}}{v_{d}}=\frac{-G_{M 1}}{2\left(G_{1}+G_{2}\right)}
$$

$$
B W=\frac{G_{1}+G_{2}}{C_{L}}
$$

Note: Factor of 2 increase of BW if $\mathrm{G}_{1}=\mathrm{G}_{2}$ (this often occurs)
Note: Factor of 2 reduction of GB if $\mathrm{G}_{1}=\mathrm{G}_{2}$ (this often occurs) $G B=\frac{G_{M 1}}{2 C_{L}}$

Single-stage low-gain differential op amp

-- The "differential" gain --
Single-Ended Output : Differential Input Gain

Quarter Circuit

Have synthesized fully differential op amp from quarter circuit!
Termed the 5T Op Amp

Single-stage low-gain differential op amp

Quarter Circuit

Single-Ended Output : Differential Input Gain

$$
\begin{aligned}
& A(s)=\frac{v_{0 U T}}{v_{d}}=\frac{-\frac{g_{m 1}}{2}}{s C_{L}+g_{o 1}+g_{o 3}} \\
& A_{V 0}=\frac{-g_{m 1}}{2\left(g_{01}+g_{03}\right)} \\
& B W=\frac{g_{01}+g_{03}}{C_{L}}
\end{aligned}
$$

$$
G B=\frac{g_{m 1}}{2 C_{L}} \quad \text { Circuit is Very Sensitive to } \mathrm{V}_{\mathrm{B} 1} \text { and } \mathrm{V}_{\mathrm{B} 2} \text { !! }
$$

- Have obtained analysis of fully differential op amp directly from quarter circuit !
- Still need to determine what happens if input is not differential !
- Have almost obtained op amp small-signal characteristics by inspection from quarter circuit !!
- Fully Differential Single-Stage Amplifier
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
\Rightarrow - Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Single-stage low-gain differential op amp

-- The "differential" gain --

- CMFB circuit determines average value of the drain voltages
- Compares the average to the desired quiescent drain voltages
- Established a feedback signal $\mathrm{V}_{\mathrm{B} 1}$ to set the right Q-point
- Shown for $\mathrm{V}_{\mathrm{B} 1}$ but could alternately be applied to $\mathrm{V}_{\mathrm{B} 2}$

Details about CMFB circuits will be discussed later

Single-stage low-gain differential op amp

 Summary

$$
\begin{aligned}
& A(s)=\frac{v_{o u T}^{-}}{v_{d}}=\frac{-\frac{G_{M}}{2}}{s C_{L}+G_{1}+G_{2}} \\
& A_{V 0}=\frac{-G_{M 1}}{2\left(G_{1}+G_{2}\right)} \\
& B W=\frac{G_{1}+G_{2}}{C_{L}} \\
& G B=\frac{G_{M 1}}{2 C_{L}}
\end{aligned}
$$

$$
\begin{aligned}
G B & =\frac{g_{m 1}}{2 C_{L}} \\
A_{\circ} & =\frac{\frac{g_{m 1}}{2}}{g_{01}+g_{03}}
\end{aligned}
$$

Have obtained differential gain of 5T Op Amp by inspection from quarter circuit

- Fully Differential Single-Stage Amplifier
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Common-Mode and Differential-Mode Analysis

Consider an output voltage for any linear circuit with two inputs (i.e. need not be symmetric)

By superposition

$$
v_{\mathrm{OUT}}=\mathrm{A}_{1} v_{1}+\mathrm{A}_{2} v_{2}
$$

where A_{1} and A_{2} are the gains (transfer functions) from inputs 1 and 2 to the output respectively

Define the common-mode and difference-mode inputs by

$$
v_{\mathrm{c}}=\frac{v_{1}+v_{2}}{2} \quad v_{\mathrm{d}}=v_{1}-v_{2}
$$

These two equations can be solved for v_{1} and v_{2} to obtain

$$
v_{1}=v_{\mathrm{c}}+\frac{v_{\mathrm{d}}}{2} \quad v_{2}=v_{\mathrm{c}}-\frac{v_{\mathrm{d}}}{2}
$$

Common-Mode and Differential-Mode Analysis

Consider an output voltage for any linear circuit with two inputs

Substituting into the expression for $\boldsymbol{v}_{\text {out }}$, we obtain

$$
v_{\text {OUT }}=\mathrm{A}_{1}\left(v_{\mathrm{c}}+\frac{v_{\mathrm{d}}}{2}\right)+\mathrm{A}_{2}\left(v_{\mathrm{c}}-\frac{v_{\mathrm{d}}}{2}\right)
$$

Rearranging terms we obtain

$$
\begin{aligned}
& \text { s we obtain } \\
& v_{\mathrm{OUT}}=v_{\mathrm{c}}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)+v_{\mathrm{d}}\left(\frac{\mathrm{~A}_{1}-\mathrm{A}_{2}}{2}\right)
\end{aligned}
$$

If we define A_{c} and A_{d} by

$$
A_{c}=A_{1}+A_{2} \quad A_{d}=\frac{A_{1}-A_{2}}{2}
$$

Can express $\boldsymbol{v}_{\text {Out }}$ as

$$
v_{\mathrm{OUT}}=v_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}}+v_{\mathrm{d}} \mathrm{~A}_{\mathrm{d}}
$$

Common-Mode and Differential-Mode Analysis

Depiction of singe-ended inputs and common/difference mode inputs

Alternate Equivalent Represntations

- Applicable to any linear circuit with two inputs and a single output
- Op amps often have symmetry and this symmetry further simplifies analysis

Common-Mode and Differential-Mode Analysis

Consider any output voltage for any linear circuit with two inputs

$$
v_{1} \begin{gathered}
\substack{\text { Linear } \\
\text { Circuit } \\
A}
\end{gathered}
$$ Implication: Can solve any linear two-input circuit by applying superposition with \boldsymbol{v}_{1} and v_{2} as inputs or with v_{c} and v_{d} as inputs. This can be summarized in the following theorem:

Theorem 1: The output for any linear network can be expressed equivalently as $v_{\text {OUT }}=\mathrm{A}_{1} v_{1}+\mathrm{A}_{2} v_{2}$ or as $v_{\text {OUT }}=v_{\mathrm{C}} \mathrm{A}_{\mathrm{c}}+v_{\mathrm{d}} \mathrm{A}_{\mathrm{d}}$
Superposition can be applied to either v_{1} and v_{2} to obtain A_{1} and A_{2} or to $\boldsymbol{v}_{\mathrm{c}}$ and $\boldsymbol{v}_{\mathrm{d}}$ to obtain A_{c} and A_{d}

Observation: In a circuit with $\mathrm{A}_{2}=-\mathrm{A}_{1}, \mathrm{~A}_{\mathrm{C}}=0$ we obtain

$$
v_{\text {OUT }}=v_{\mathrm{d}} \mathrm{~A}_{\mathrm{d}}
$$

Analysis of op amps up to this point have assumed differential excitation

Common-Mode and Differential-Mode Analysis

Extension to differential outputs and symmetric circuits

Differential Output

Symmetric Circuit with Symmetric Differential Output

Note that this defined output is differential, not single-ended !
Observation: In a symmetric circuit with a symmetric differential output, $\mathrm{A}_{\mathrm{C}}=0$ so can be shown that $\quad v_{\mathrm{OUT}}=v_{\mathrm{d}} \mathrm{A}_{\mathrm{d}}$ This is summarized in the theorem:

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$
v_{\text {OUT }}=\mathrm{A}_{\mathrm{d}} v_{\mathrm{d}}
$$

where A_{d} is the differential voltage gain and the voltage $v_{d}=v_{1}-v_{2}$

Symmetric Circuit with Symmetric Differential Output

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$
v_{\mathrm{OUT}}=\mathrm{A}_{\mathrm{d}} v_{\mathrm{d}}
$$

where A_{d} is the differential voltage gain and the voltage $\boldsymbol{v}_{\mathrm{d}}=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}$

Common-Mode and Differential-Mode Analysis

Proof of Theorem 2 for Symmetric Circuit with Symmetric Differential Output:

By superposition, the single-ended outputs can be expressed as

$$
\begin{aligned}
& v_{\mathrm{OUT}^{+}}=\mathrm{T}_{\mathrm{OPA}} v_{1}+\mathrm{T}_{\mathrm{OPB}} v_{2} \\
& \boldsymbol{v}_{\mathrm{OUT}^{-}}=\mathrm{T}_{\mathrm{ONA}} \boldsymbol{v}_{1}+\mathrm{T}_{\mathrm{ONB}} \boldsymbol{v}_{2}
\end{aligned}
$$

where $T_{\text {OPA }}, T_{\text {OPB }}, T_{\text {ONA }}$ and $T_{\text {ONB }}$ are the transfer functions from the A and B inputs to the single-ended + and - outputs
taking the difference of these two equations we obtain

$$
v_{\text {OUT }}=v_{\text {OUT }+}-v_{\text {OUT- }}=\left(\mathrm{T}_{\mathrm{OPA}}-\mathrm{T}_{\text {ONA }}\right) v_{1}+\left(\mathrm{T}_{\mathrm{OPB}}-\mathrm{T}_{\text {ONB }}\right) v_{2}
$$

by symmetry, we have

$$
\mathrm{T}_{\mathrm{OPA}}=\mathrm{T}_{\mathrm{ONB}} \text { and } \mathrm{T}_{\mathrm{ONA}}=\mathrm{T}_{\mathrm{OPB}}
$$

thus can express $\vee_{\text {OUT }}$ as

$$
v_{\text {OUT }}=\left(\mathrm{T}_{\mathrm{OPA}}-\mathrm{T}_{\mathrm{ONA}}\right)\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)
$$

or as

$$
v_{\text {OUT }}=\mathrm{A}_{\mathrm{d}} v_{\mathrm{d}}
$$

where $\mathrm{A}_{\mathrm{d}}=\mathrm{T}_{\mathrm{OPA}}-\mathrm{T}_{\mathrm{ONA}}$ and where $v_{\mathrm{d}}=v_{1}-v_{2}$

Common-Mode and Differential-Mode Analysis

Consider any output voltage for any linear circuit with two inputs

Single-Ended Superposition

Difference-Mode/Common-Mode Superposition

Common-Mode and Differential-Mode Analysis

Consider an output voltage for any linear circuit with two inputs

- Difference-Mode/Common-Mode Superposition is almost exclusively used for characterizing Amplifiers that are designed to have a large differential gain and a small common-mode gain
- Analysis to this point has been focused only on the circuit on the left

Common-Mode and Differential-Mode Analysis

Consider an output voltage for any linear circuit with two inputs

Does Conventional Wisdom Address the Common Mode Gain Issue?

Does Conventional Wisdom Address the Common Mode Gain Issue?

66
CHAPTER 2 OPERATIONAL AMPLIFIERS

FIGURE 2.3 Equivalent circuit of the ideal op amp.

Does Conventional Wisdom Address the Common Mode Gain Issue?

66
CHAPTER 2 OPERATIONAL AMPLIFIERS

FIGURE 2.3 Equivalent circuit of the ideal op amp.

TABLE 2.1 Characteristics of the Ideal Op Amp

1. Infinite input impedance
2. Zero output impedance
3. Zero common-mode gain or, equivalently, infinite common-mode rejection
4. Infinite open-loop gain A
5. Infinite bandwidth

How is Common-Mode Gain Modeled?

If Op Amp is a Voltage Amplifier with infinite input impedance, zero output impedance, and one terminal of the output is grounded

Ideal Differential Voltage Amplifier

$$
V_{d}=V_{1}-V_{2}
$$

Ideal Voltage Amplifier

$$
\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{1}-\mathrm{V}_{2} \quad \mathrm{~V}_{\mathrm{c}}=\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2}
$$

- Fully Differential Single-Stage Amplifier
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis

Common Mode Gain

- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Performance with Common-Mode Input

Single-Ended Outputs
Tail-Current Bias

Differential Output Tail Current Bias

Single-Ended Outputs Tail-Voltage Bias

Differential Output

Performance with Common-Mode Input

Consider tail-current bias amplifier

Common-Mode Half-Circuit
Can we assume $\boldsymbol{v}_{\mathrm{x}}=0$ since it is on axis of symmetry? No! Excitation is not differential!

Performance with Common-Mode Input

Consider tail-current bias amplifier with $i_{c}=0$

Common-Mode Half-Circuit (large signal: nonlinear)

Common-Mode Half-Circuit (small-signal linear)

$$
\left.\begin{array}{l}
v_{\text {OUTC }}\left(\mathrm{sC}+\mathrm{G}_{1}+\mathrm{G}_{2}\right)+\mathrm{G}_{\mathrm{M} 1} v_{1}=\mathrm{G}_{1} v_{\mathrm{x}} \\
v_{\mathrm{C}}=v_{1}+v_{\mathrm{X}} \\
v_{\mathrm{X}} \mathrm{G}_{1}-\mathrm{G}_{\mathrm{M} 1} v_{1}=v_{\text {OUTC }} \mathrm{G}_{1}
\end{array}\right\}
$$

Solving, we obtain

$$
v_{\text {OUTC }}=0 \text { thus } \mathrm{A}_{\mathrm{C}}=0
$$

Performance with Common-Mode Input

Consider tail-voltage bias amplifier with $i_{c}=0$

Common-Mode Half-Circuit

Performance with Common-Mode Input

Consider tail-voltage bias amplifier with $i_{c}=0$

Common-Mode Half-Circuit (large signal: nonlinear)

Common-Mode Half-Circuit (small signal: linear)

$$
\left.\begin{array}{l}
v_{\text {OUTC }}\left(\mathrm{sC}+\mathrm{G}_{1}+\mathrm{G}_{2}\right)+\mathrm{G}_{\mathrm{M} 1} v_{1}=0 \\
v_{\mathrm{C}}=v_{1}
\end{array}\right\}
$$

Solving, we obtain

$$
\frac{v_{\text {OUTC }}}{v_{\mathrm{C}}}=\mathrm{A}_{\mathrm{C}}=\frac{-\mathrm{G}_{\mathrm{M} 1}}{\mathrm{sC}+\mathrm{G}_{1}+\mathrm{G}_{2}}
$$

This circuit has a rather large common-mode gain and will not reject common-mode signals

- Not a very good differential amplifier
- But of no concern in applications where $v_{\mathrm{C}}=0$
- Fully Differential Single-Stage Amplifier
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain

Overall Transfer Characteristics

- Design of 5T Op Amp
- Slew Rate

Overall Small-Signal Analysis

As stated earlier, with common-mode gain and difference-mode gains available

$$
v_{\text {OUT }}=v_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}}+v_{\mathrm{d}} \mathrm{~A}_{\mathrm{d}}
$$

- Fully Differential Single-Stage Amplifier
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics

Design of 5T Op Amp

- Slew Rate

Design of 5T op amp

Single-stage low-gain differential op amp

Quarter Circuit

Single-Ended Output : Differential Input Gain

$$
\begin{gathered}
A(s)=\frac{-\frac{g_{m 1}}{2}}{s C_{L}+g_{o 1}+g_{o 3}} \\
A_{\circ}=\frac{\frac{g_{m 1}}{2}}{g_{01}+g_{o 3}} \\
G B=\frac{g_{m 1}}{2 C_{L}}
\end{gathered}
$$

Design of Basic Single-stage low-gain differential op amp

$$
A(s)=\frac{-\frac{g_{m 1}}{2}}{s C_{L}+g_{01}+g_{03}}
$$

$$
A_{\circ}=\frac{\frac{g_{m 1}}{2}}{g_{o 1}+g_{o 3}}
$$

$$
\mathrm{GB}=\frac{\mathrm{g}_{\mathrm{m} 1}}{2 \mathrm{C}_{\llcorner }}
$$

What are the number of degrees of freedom? (assume $\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}$ fixed, Symmetry)
Natural Parameters (assuming symmetry):

Need a CMFB circuit to establish $\mathrm{V}_{\mathrm{B} 1}$

$$
\left\{\frac{W_{1}}{L_{1}}, \frac{W_{3}}{L_{3}}, \frac{W_{5}}{L_{5}}, \mathrm{~V}_{\mathrm{B} 1}, \mathrm{~V}_{\mathrm{B} 2}\right\}
$$

Constraints: $I_{D 5} \simeq 2 I_{D 3}$
Net Degrees of Freedom: 4

- Expressions for A_{0} and $G B$ were obtained from quarter-circuit
- Expressions for A_{0} and $G B$ in terms of natural parameters for quarter circuit were messy
- Can show that expressions for A_{0} and GB in terms of natural parameters for 5 T amplifier are also messy

Can a set of practical design parameters be identified?

Design of Basic Single-stage low-gain differential op amp

$$
A(s)=\frac{-\frac{g_{m 1}}{2}}{s C_{L}+g_{01}+g_{03}}
$$

$$
A_{\circ}=\frac{\frac{g_{m 1}}{2}}{g_{o 1}+g_{o 3}}
$$

$$
\mathrm{GB}=\frac{\mathrm{g}_{\mathrm{m} 1}}{2 \mathrm{C}_{\mathrm{L}}}
$$

What are the number of degrees of freedom? (assume $V_{D D}, C_{L}$ fixed, Symmetry)

Natural Parameters:

Need a CMFB circuit to establish $\mathrm{V}_{\mathrm{B} 1}$

$$
\left\{\frac{W_{1}}{L_{1}}, \frac{W_{3}}{L_{3}}, \frac{W_{5}}{L_{5}}, \mathrm{~V}_{\mathrm{B} 1}, \mathrm{~V}_{\mathrm{B} 2}\right\}
$$

Practical Parameters:
$\left\{\mathrm{V}_{\mathrm{EB} 1}, \mathrm{~V}_{\mathrm{EB}}, \mathrm{V}_{\mathrm{EB} 5}, \mathrm{P}\right\}$
Constraints: $I_{D 5} \simeq 2 I_{D 3} \quad$ Net Degrees of Freedom: 4
Will now express small-signal performance characteristics in terms of Practical Parameters

Design of Basic Single-stage low-gain differential op amp

Quarter Circuit

Single-Ended Output : Differential Input Gain

$$
\begin{aligned}
A(s) & =\frac{-\frac{g_{m 1}}{2}}{s C_{\llcorner }+g_{01}+g_{03}} \\
A & =\frac{\frac{g_{m 1}}{2}}{g_{01}+g_{03}} \\
G B & =\frac{g_{m 1}}{2 C_{\llcorner }}
\end{aligned}
$$

Practical Parameters:
$\left\{\mathrm{V}_{\mathrm{EB}} 1, \mathrm{~V}_{\mathrm{EB}}, \mathrm{V}_{\mathrm{EB} 5}, \mathrm{P}\right\}$

$$
A_{0}=\left[\frac{1}{\lambda_{1}+\lambda_{3}}\right]\left(\frac{1}{V_{E 81}}\right) \quad G B=\left(\frac{\mathrm{P}}{V_{00} C_{\mathrm{L}}}\right) \cdot\left[\frac{1}{2 V_{\mathrm{EEA}}}\right]
$$

Design of Basic Single-stage low-gain differential op amp

Quarter Circuit

Single-Ended Output : Differential Input Gain

$$
\begin{aligned}
A(s) & =\frac{-\frac{g_{m 1}}{2}}{s C_{L}+g_{01}+g_{03}} \\
A & =\frac{\frac{g_{m 1}}{2}}{g_{01}+g_{03}} \\
G B & =\frac{g_{m 1}}{2 C_{L}}
\end{aligned}
$$

Practical Parameters:
$\left\{\mathrm{V}_{\mathrm{EB} 1}, \mathrm{~V}_{\mathrm{EB}}, \mathrm{V}_{\mathrm{EB5}}, \mathrm{P}\right\}$ requirements!

Need a CMFB cirrcuit to establish $\mathrm{V}_{\mathrm{B} 1}$

$$
\mathrm{A}_{0}=\left[\frac{1}{\lambda_{1}+\lambda_{3}}\right]\left(\frac{1}{\mathrm{~V}_{\mathrm{EB} 1}}\right) \quad \mathrm{GB}=\left(\frac{\mathrm{P}}{\mathrm{~V}_{\mathrm{DD}} \mathrm{C}_{\mathrm{L}}}\right) \cdot\left[\frac{1}{2 \mathrm{~V}_{\mathrm{EB} 1}}\right]
$$

Have 4 degrees of freedom but only two practical variables impact A_{0} and GB so still have 2 DOF after meet A_{0} and GB

Is this an attractive feature?
How should the remaining 2 DOF be used?

Stay Safe and Stay Healthy !

End of Lecture 4

